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Bayesian Approach 
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Example : Classification 

Prior : Markov Random Field 

Likelihood : conditional independence assumption 
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No contextual information in the likelihood: 

 1 - uncorrelated noise 

 2 - no texture 
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Markov Random Field Approach 

Markov Random Field : 

 

 

 

 

 

• Contextual Information Modeling 

• Link with Statistical Physics : Gibbs Fields 
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Hammersley-Clifford Theorem  

A MRF verifying a positivity constraint can be written 

 as a Gibbs field: 
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Potts Model 
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Simple modeling 

Prior : Potts model 

Likelihood : Gaussian model 
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 SPOT image © CNES / 
Airbus D & S 

Example : Classification 

Classification result  

© Ariana / INRIA  
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From context to geometry 

SPOT image © CNES 

IKONOS image © Satellite imaging Corporation 

IKONOS image © Satellite image Corporation 
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SPOT image © CNES 

aerial image © IGN 

From context to geometry 
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From pixels to objects 

• Goals : 

– To take into account data at a macroscopic 

scale. 

– To take into account the geometry of objects. 

– To take into account relations between objects 

(macro-texture). 

• But we do not know the number of objects 

(Markov random fields on graphs are excluded). 

Solution : Marked point processes 
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Marked Point process defined by a 

density w.r.t. the Poisson process 

• A marked point process X on c = P x M is a point 

process on c for which the point location is in P and the 

marks in M. 

 

• We define X by its probability density f  w.r.t. the law 

pn(.) of a Poisson process known as the reference 

process (n (.) is the intensity measure) : 
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Markov process 

 

• A point process density  

 is Markovian under the neighborhood relation ~ if and 

only if there exists a measurable function                              

such that : 
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Stability 

• Condition required for proving the convergence of MCMC 

sampling methods.  

• A point process defined by its f(.) w.r.t. a reference measure 

pn(.) is locally stable if there exists a real number M such that :  

     c uNxxMfuxf
f ,,
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Sampling : Birth and death algorithm 

(Geyer/Moller-94) 
• Birth : with probability ½, propose to add a new point u in 

c following some density          to the current 
configuration x. 

 Let y = x U {u}, compute the ratio : 

 

 

• Death : with probability ½, propose to remove a point v 
uniformly chosen in x. Let y = x / {v}, compute the ratio : 

 

 

• With probability                      accept the 
proposition xt+1 = y, otherwise accept the proposition 
xt+1=x. 
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Sampling : RJMCMC (Green-95) 

• Mixture of several proposition kernels : 

 

 

• Convergence condition exists. 
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RJMCMC 

• Algorithm: 

At time t:  

 

 1) Select randomly a kernel qm  using the discrete law (pm(x)) 

 

 2) Generate a new configuration y with respect to the selected kernel : 

 

 3) Compute the acceptance ratio :  

 

 4) Compute the acceptance rate   : 

 

 5) With probability        set:  

 

                           (1-)  set:   
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Optimization 
• Goal :  Estimate a configuration maximizing f(.) 

 

• Simulated annealing :  

  
 

 

 

 

 
• Logarithmic decrease  global maximum.  

 

• In practice : geometric decrease. 

 At each step, Tt+1 = Tt  c, where c is a constant close to 1. 

 (c=0.99999 or c=0.999999 depending on the difficulty of the detection) 

Successive simulations of ft(x) n(dx) using an RJMCMC algorithm 
with : 

 

 

where (Tt) ( temperature) decreases toward zero. 
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 Goal :   

  To model the observed scene as a configuration of objects (roads, rivers, 

buildings, trees, flamingos). 

 

• Stochastic modeling:  
  Set of objects in the scene   realization of a marked point process, X.   

 

• Density:    
        

   

                                       data term                     prior 

 

• Algorithm : Monte Carlo sampler (e.g. RJMCMC) + simulated annealing  

Summary 
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First example : Quality Candy Model  

for road network extraction  

• Objects : Segments 

• Prior : models the connectivity and the 

curvature  

•  Data term 

PhDs : R. Stoïca, C. Lacoste in collaboration with IGN and BRGM 
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First example : Quality Candy Model  

for road network extraction  

PhDs : R. Stoïca, C. Lacoste in collaboration with IGN and BRGM 
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First example : Quality Candy Model  

for road network extraction  

• Objects : Segments 

• Prior : models the connectivity and the 

curvature  

• Data term 

PhDs : R. Stoïca, C. Lacoste in collaboration with IGN and BRGM 
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First example : Quality Candy Model  

for road network extraction  

• Objects : Segments 

• Prior : models the connectivity and the 

curvature  

•  First data term : t-test 

PhDs : R. Stoïca, C. Lacoste in collaboration with IGN and BRGM 
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First example : Quality Candy Model  

for road network extraction  

• Objects : Segments 

• Prior : models the connectivity and the 

curvature  

•  Second data term : t-test 

PhDs : R. Stoïca, C. Lacoste in collaboration with IGN and BRGM 
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Kernels of the  

RJMCMC algorithm 

•Uniform birth and death 

 

•Birth and death in a neighborhood 

 

•Extension/contraction of a segment 

 

•Translation of a segment 

 

•Rotation of a segment 
PhDs : R. Stoica, C. Lacoste 
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Results 

PhDs : R. Stoica, C. Lacoste © IGN 
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Results 

PhDs : R. Stoica, C. Lacoste © Ariana / INRIA 
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Results 

PhDs : R. Stoica, C. Lacoste © ESA 



29 

Results 

PhDs : R. Stoica, C. Lacoste © Ariana / INRIA 
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Galaxy Filament Detection 

Masters : P.Gernez in collaboration with OCA 

© Center for Astrophysics (Harvard University) 
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Galaxy Filament Detection 

• Prior : Quality Candy model 

• Assumptions for the data term : 

– Segments live in dense areas 

– Segments live in the center 

 of clouds 

– Segments live in elongated clusters 

Masters : P.Gernez in collaboration with OCA 
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© Center for Astrophysics (Harvard University) 

Masters : P.Gernez 

Results 

© Ariana / INRIA / OCA 
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Second example : 

tree crown extraction 

• Object : disk 

• Prior : non-overlapping 

 

 

 

• Data : Gaussian likelihood 
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PhD : G. Perrin in collaboration with ECP 
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Result 

PhD : G. Perrin in collaboration with ECP 
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Result 

PhD : G. Perrin in collaboration with ECP 
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Proposed method 
• Marked point processes : find an unknown number of geometric 

objects (ellipses or ellipsoids) whose positions and sizes are 

unknown. 

• Find the best configuration of objects : 

Dense area : plantation (merged shadows)  

 

Sparse vegetation (drop shadows) 

X= {X1,X2,…,Xn} 

ELLIPSES : 2D model 

ELLIPSOIDS : 3D model 

PhD : G. Perrin in collaboration with ECP 
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Density of the process 

• Goal : design the density of the mpp in order to make tree 

configurations be the most likely configurations. 
 

• Minimise the energy : 
 

• Mathematical tools : Markov Chain Monte Carlo algorithms + 

simulated annealing. 
Energy U(x) 

More likely Less likely 

Poplars to be extracted with ellipses 

 )(exp
1

)(f:)( xU
Z

xxU 

PhD : G. Perrin in collaboration with ECP 
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Energy of the model 
• Regularizing term + Data term : 
 

U(x) = Ur (x) + Ud (x) 
 

• Ur (x) : prior term = interactions btw objects. 

 

 

 

 

 

 

 

 

• Ud (x) : data term = fitting the object into the image. 


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Data energy term Ud (x) 
• What is typical of the presence of a tree ? 

 high reflectance in the near infrared. 

 shadow. 

 neighbourhood. 
 

• In dense vegetation : merged shadows, shadow area = all around 

the tree. 
 

• In sparse vegetation : drop shadows, shadow area = in the direction 

of the sun light. 

PhD : G. Perrin in collaboration with ECP 
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Results with the 2D model (1) 

Poplar plantation. 1 ha ©IFN (now IGN).              2D model extraction. © Ariana / INRIA  

PhD : G. Perrin in collaboration with ECP 
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Results with the 2D model (2) 

Poplar plantation. 7 ha ©IFN (now IGN) 2D model : more than 1300  

objects. © Ariana / INRIA  
PhD : G. Perrin in collaboration with ECP 
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Results with the 3D model (1) 

• Application : sparse vegetation, trees on the borders of 

plantations, mixed height stands. 
 

• Hypotheses : the position of the sun is given, trees close to the 

Nadir and at ground level (no deformation). 
 

• Results : position, crown diameter, approximate height of the 

tree. 

©  IFN (now IGN) ©  IFN (now IGN) ©  IFN (now IGN) 

PhD : G. Perrin in collaboration with ECP 
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Results with the 3D model (2) 

• 3D model extraction in sparse vegetation. 

2.5 ha (Alpes Maritimes)  

© IFN (now IGN). 

3D model extraction © Ariana / INRIA  

PhD : G. Perrin in collaboration with ECP 
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Results with the 3D model (3) 

• Application : density of the sparse vegetation  ≈ 19%. 

3D model extraction. © Ariana / INRIA Binary image of the vegetation. 

PhD : G. Perrin in collaboration with ECP 
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Results with the 3D model (4) 

• Too many objects. 
 

• Information on the timber forest density  ≈ 15%. 

Mixed height stand (3 ha) © IFN (now IGN).          3D model extraction © Ariana / INRIA 
 
PhD : G. Perrin in collaboration with ECP 
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Third example : Counting Flamingos 
Previous techniques for counting flamingos : 

 Manually, by sampling, counting then extrapolating 

 Tricky because of the low quality of the aerial images 

 Time consuming and in the end not accurate 

Need to develop a method to count flamingos automatically 

Masters : S. Descamps in collaboration with Tour du Valat 

© Tour du Valat © Tour du Valat 

(free software available with CeCILL C licence at http://www.flamingoatlas.org/dwld_flamingo.php) 
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Model for the extraction of 

flamingos 

A priori model : Interaction between objects [G.Perrin et al., 06] 

Top: high energy, Bottom: low energy 

 Penalization of overlapped objects 

Masters : S. Descamps in collaboration with Tour du Valat 
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Model for the extraction of 

flamingos 

Data model : to adapt objects to flamingos 

Flamingos considered as bright ellipses making a contrast with their crowns. 

 Bhattacharya distance computation from the pixel distributions in the ellipse 

and in its crown [G.Perrin et al., 06]. 

 Comparison of the center of the ellipse with the mean value of a flamingo in 

the image. [S. Descamps et al., 08] 

We favor good objects, we penalize bad ones (automatic computation of the limit 

L): 

Different levels of energy Ellipse and its crown 

+ 

Masters : S. Descamps in collaboration with Tour du Valat 
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Estimation of size of a French colony: 

 560 flamingos detected 

Results 

© IFN (now IGN) © Ariana / INRIA 

Masters : S. Descamps in collaboration with Tour du Valat 
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Results 

Estimation of size of a Turkish colony (2005): 

 Low density 

© Tour du Valat 

© Tour du Valat 

Masters : S. Descamps in collaboration with Tour du Valat 
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Results 
Estimation of size of a Turkish colony (2005): 

 Automatic: 3680 flamingos;          Manually: 3682 flamingos 

 Computation time: 80 minutes 

 Image size: 6080 x 4128 

© Tour du Valat © Ariana / INRIA 

Masters : S. Descamps in collaboration with Tour du Valat 
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Results  

Estimation of size of an African colony (2004): 

 High density 

© Tour du Valat 

© Tour du Valat 

Masters : S. Descamps in collaboration with Tour du Valat 
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Results 

Estimation of size of an African colony (2004): 

 

 

Automatic: 14300 flamingos 

 Manually: 13650 flamingos 

 Computation time: 15 minutes 

 Image size: 3008 x 2000 

© Ariana / INRIA 

Masters : S. Descamps in collaboration with Tour du Valat 
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Fourth example : boat detection 

Harbor management is a difficult problem due to : 

 Big increase in the recreational fleet 

 Reduced anchoring space 

© CNES © CNES 
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Model for the detection of boats 

A new data term : to adapt the objects to boats 

Boats tend to have a small dark area in the middle 

 Distance similar to Bhattacharyya distance between interior of 

the object and the surrounding border [G. Perrin et al. 06] 

 Distance similar to Bhattacharyya distance between inner 

border of the object and the surrounding border [P. Craciun et 

al. 13] 
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Model for the detection of boats 

A first prior model : to adapt the interactions between objects 

Boats in harbors are aligned and close to each other 

 Favor close and aligned objects which have the same global 

orientation [S. Ben Hadj et al. 10] 

© Ayin / INRIA 
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Model for the detection of boats 

A second prior model : to handle multiple orientations of objects 

Docks in harbor can have multiple orientations and thus, boats too 

 Favor close and aligned objects 

 Pre-compute orientation of water area [P. Craciun et al. 13] 

Boats are perpendicular to the local orientation of the water 

Local orientation of the 

water © Ayin / INRIA 
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Results 

Estimation of recreational fleet in harbor (Ben Hadj’s model): 

 

Automatic: 518 boats 

 Manually: 523 boats 

 Computation time: 55 minutes 

 Image size: 375 x 285 

© Ayin / INRIA 
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Results 

Estimation of recreational fleet in harbor (Ben Hadj’s model): 

 

Automatic: 233 boats 

 Manually: 234 boats 

 Computation time: 32 minutes 

 Image size: 304 x 220 

© Ayin / INRIA 



60 

Results 

Estimation of recreational fleet in harbor (Craciun’s model): 

 

Automatic: 168 boats 

 Manually: 190 boats 

 Computation time: 36 minutes 

 Image size: 326 x 226 

© Ayin / INRIA 
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Fifth example : building extraction 

PhDs : M. Ortner, F. Lafarge in collaboration with IGN/CNES/DGA 

Context  

 spatial data (PLEIADES simulations) 

 single type of data : a DEM  

 automatic (without cadastral maps, without 

focalisation process) 

 dense urban areas 

  

Toward structural modeling 

 adapted to data (object approach) 

 good compromise generality / robustness 

 modular and developable 

 

2 stages : 2D extraction, then 3D reconstruction 

 computation is greatly reduced 

A building = an assembly of 

simple urban structures 
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Stage 1: 

2D extraction of buildings 

PhDs : M. Ortner, F. Lafarge in collaboration with IGN/CNES/DGA 
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2D extraction of buildings 
Outlines of buildings by marked point processes [Ortner04] 

 

 Energy minimization : 

 

 

         : data term 

 coherence between the location of a  

rectangle and discontinuities in the DEM 

 

 

         : regularizing term 

 introduction of prior knowledge about the  

object layout (alignment, paving, completion) 

 

 
PhDs : M. Ortner, F. Lafarge PhDs : M. Ortner, F. Lafarge in collaboration with IGN/CNES/DGA 
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Transformation of rectangles into structural supports 

 

 transformation of rectangles into unspecified 

quadrilaterals which are ideally connected (without 

overlapping, with a common edge) 

 

 

 

 

 

 partitioning of rectangles that represent different 

urban structures 

 
 

 

2D extraction of buildings 

PhDs : M. Ortner, F. Lafarge in collaboration with IGN/CNES/DGA 
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Examples 

 
 

 

rectangular supports  

by [Ortner04] 
“connected” supports 

by [Lafarge07] 

structural supports 

by [Lafarge07] 

2D extraction of buildings 

© Ariana / INRIA 

PhDs : M. Ortner, F. Lafarge in collaboration with IGN/CNES/DGA 
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Stage 2: 

3D reconstruction of buildings 

PhDs : M. Ortner, F. Lafarge in collaboration with IGN/CNES/DGA 
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Library of 3D models 

 

The roof shapes : 

 

 9 forms 

 1 to 6 parameters 

 includes curved roofs 

 

 

The variants : 

 

 ends and junctions 

 orientation of the object 

 

Variant - Variant V Variant 2V 

Variant L Variant T Variant + 

3D reconstruction of buildings 
  Platform   Flat   Shed 

  Gable   Dissymetric gable 

 
  Saltbox 

 

  Semi-elliptic   Elliptic   Mansard 

PhDs : M. Ortner, F. Lafarge in collaboration with IGN/CNES/DGA 
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PLEIADES simulations 

©CNES 
Building Extraction 

 © Ariana / INRIA  

 

3D Reconstruction  

© INRIA / IGN / CNES 

Results 

PhDs : M. Ortner, F. Lafarge in collaboration with IGN/CNES/DGA 
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Conclusion 

• The marked point process framework 

extends the application domain of Markov 

approaches : 

– Data taken into account at the object level 

– Geometrical information taken into account 

• Markov random fields are still an efficient 

tool (depending on the image resolution) 
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Current extensions 

• Point process with marks living in a shape space 
– Multiple object detection [F. Lafarge et al.] 

– Computational issues [Y. Verdie et al., P. Craciun et al.] 

• New optimization dynamics 
– Diffusion processes [X. Descombes et al.] 

– Multiple Birth and Cut [A. Gamal et al.] 

• Different applications 
– Vascular network detection in the brain in 3D [X. 

Descombes et al.] 

– Cell counting [X. Descombes et al.] 

– Pimple detection in dermatology [J. Zerubia et al.] 
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Future work 

• Point process with marks living in a shape space 
– More accurate definition of the geometry 

 

• Parameter estimation 
– Quasi-MCMC techniques 

– Genetic algorithms 

 

• New applications 
– Object tracking in image sequences 
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• CNES, IGN, Airbus D&S, Satellite Image Corporation, Tour du 

Valat and Harvard University, for providing the data.  

 

• Airbus D&S, DGA, MAE, CNES, IGN, BRGM, ECP and 
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For more information : 

• Previous team: 

http://www.inria.fr/ariana 

 

• Current teams: 

http://team.inria.fr/ayin 

http://www-sop.inria.fr/morpheme/ 

http://team.inria.fr/titane 
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